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a b s t r a c t 

Previous feature selection methods equivalently consider the samples to select important features. How- 

ever, the samples are often diverse. For example, the outliers should have small or even zero weights 

while the important samples should have large weights. In this paper, we add a self-paced regularization 

in the sparse feature selection model to reduce the impact of outliers for conducting feature selection. 

Specifically, the proposed method automatically selects a sample subset which includes the most impor- 

tant samples to build an initial feature selection model, whose generalization ability is then improved 

by involving other important samples until a robust and generalized feature selection model has been 

established or all the samples have been used. Experimental results on eight real datasets show that the 

proposed method outperforms the comparison methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Big data has been widely appearing in various fields, such as

attern recognition and machine learning [8,31,39,40,48] . A com-

on issue in the data processing is that big data often contain

nimportant features, which increase the computational cost and

ffect the effectiveness of the learning of big data [32,33,37,42] .

oreover, the unimportant features in big data easily lead to the

ssue of curse of dimensionality [41,50] . Recently, dimensionality

eduction (such as feature selection and subspace learning) has be-

ome one of the important research fields via reducing the number

f features of big data [17,51,52,54] . 

Feature selection is designed to delete the redundant features

or conducting dimensionality reduction. Existing feature selec-

ion methods can be commonly partitioned into three categories,

.e., filter method [9,53] , wrapper method [10,36] , and embedded

ethod [20,43] . Filter method first selects useful features ( i.e., im-

ortant features) from all the features by certain evaluation crite-

ion, and then uses the selected feature subset to conduct classifi-

ation or clustering tasks, and thus simple and efficiently selecting

eatures. Wrapper method directly utilizes the training model to

valuate each feature subset so that finding the best feature sub-
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et as the results of feature selection. Obviously, wrapper method

s more excellent than filter method. However, wrapper method

s more complex than filter method. Embedded method automati-

ally selects the useful features during the training process, i.e., in-

egrating the feature selection procedure into the training model.

mbedded method is more effective than both filter method and

rapper method. Hence, embedded method has been attracting a

umber of research interests [12,44] . 

In this paper, we introduce the self-paced learning technique

nto the sparse feature selection framework to consider the sam-

le diversity, based on that different samples have different con-

ributions to the feature selection model [16,28] . Specifically, our

roposed method, namely unsupervised feature selection by self-

aced regularization (UFS_SP for short), first obtains the self-

epresentation coefficient matrix by using the feature level self-

epresentation [12,17] as well as employs the � 2, 1 -norm regular-

zation to penalize the coefficient matrix so that the weight of

he irrelevant feature will become small (even zero) and the im-

ortant features are assigned large weights. Our method then in-

egrates a self-paced learning regularization [16,28] into the con-

tructed feature selection framework. In this way, the proposed

ethod first automatically selects the most important samples as

 subset to initialize the feature selection model, and then selects

he most important samples from remaining samples to improve

he robustness and generalization ability of the initial feature se-

ection model. This process is repeated until all the samples have
ction by self-paced learning regularization, Pattern Recognition 
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Table 1 

The notations used in this paper. 

X The feature matrix of the training data 

x A vector of X 

x i The i th row of X 

x j The j th column of X 

x i, j The element of the i th row and the j th column of X 

|| X || F The Frobenius norm of X , i.e., || X || F = 

√ ∑ 

i, j x 
2 
i, j 

|| X || 2, 1 The � 2, 1 -norm of X , i.e., || X || 2 , 1 = 

∑ 

i 

√ ∑ 

j x 
2 
i, j 

X T The transpose of X 

tr ( X ) The trace of X 

X −1 The inverse of X 
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been selected or the feature selection model achieves stability. As

a result, all useful samples can be chosen to take participation in

the process of the feature selection model, and the outliers will be

selected later or never be selected. Moreover, we propose a novel

iterative optimization algorithm to optimize the resulting objec-

tive function and the optimization method enables the proposed

method to fast converge. 

By comparing to previous feature selection methods, the contri-

butions of the proposed method are summarized as follows: 

• Self-paced learning theory [16] is added into the sparse feature

selection framework to jointly consider the sample and feature

diversity. Self-paced learning implements a learning mode from

simple to hard by simulating human or animal learning mecha-

nisms. The proposed method can automatically assign a weight

to each sample, and then gradually adds important samples in

the iterative process to train the feature selection model. Hence,

the impact of outliers can be relieved or removed. 
• This paper proposes an effective optimization algorithm to op-

timize the proposed objective function. Important samples are

iteratively selected through an iterative process, and the cur-

rent optimal solution is obtained by optimizing the objective

function based on the currently selected samples until all the

samples are used and the final optimal solution is obtained. 

2. Related work 

In this section, we review the state-of-the-art methods of

the topics related to our proposed method, i.e., feature selection

[17,48,52] and self-paced learning [16,19,24] . 

2.1. Feature selection 

As an important dimensionality reduction technique, feature

selection tries to find a most representative feature subset from

original features [47,49,55] . Different from subspace learning

[50,56] which utilizes the transformation matrix to project the

high-dimensional data to their low-dimensional subspace, feature

selection ranks all the features by a certain approach, such as eval-

uation score [1,21] and sparse learning [18,34] , and then selects the

most important features as the final result. Hence, the outputs of

the feature selection methods are interpretable [30] . 

Depending on the availability of labels, existing feature selec-

tion methods can be partitioned into three subgroups, i.e., super-

vised method [29] , semi-supervised method [1] and unsupervised

method [18] . Supervised method uses the labels to test the train-

ing model, so the importance of features can be evaluated. Unsu-

pervised method mainly utilizes certain evaluation, such as rank

ratio [26] , Laplace score [11] and variance [7] , to evaluate the im-

portance of the features or feature subsets, then selects the top k

important features or the best representative feature subset. Semi-

supervised methods are proposed to deal with the datasets includ-

ing labeled and unlabeled samples. Semi-supervised method first

learns the intrinsic structure from labeled samples to construct a

basic model, and then utilizes the unlabeled samples to improve

the former model. 

In this paper, we mainly study unsupervised feature selection

because labels in the real worlds are difficult to be collected [30] . 

2.2. Self-paced learning 

Robust statistic [13,35] has been introduced into the domain

of machine learning to relieve the effect of outliers. Previous ro-

bust statistic methods can be divided into three groups, i.e., M-

estimation [25] , half-quadratic minimization [6] and self-paced

learning [14] . M-estimation ( i.e., maximum likelihood type esti-

mation) is the statistical procedure of evaluating an M-estimator,
Please cite this article as: W. Zheng et al., Unsupervised feature sele
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here M-estimators are obtained through the minima of sums

f functions of the data. Half-quadratic minimization is a general

ethod based on the conjugate function theory to solve the convex

r non-convex minimization optimization problem, and has been

idely used in various domains, such as robust feature extraction

15] , mean-shift [38] . Self-paced learning utilizes the theory of cur-

iculum learning to establish a new machine learning framework

rom “simple” to “hard”, which will be discussed in this paper in

etails. 

The core concept of curriculum learning [2] is simulating the

earning mode of human or animal, i.e., first learning the simple

nowledge, and then gradually increasing the learning difficulty,

ollowed by learning more difficult and professional knowledge.

elf-paced learning is a method of using mathematical expressions

o express the curriculum learning theory. Self-paced learning de-

nes the importance of samples according to the reconstruction

rror i.e., the value of loss function. Specifically, self-paced learn-

ng method usually defines a sample that its reconstruction error

s less than a certain threshold (or equivalent to zero) as an im-

ortant sample ( i.e., a “simple” sample), and others as a secondary

ample ( i.e., a “difficult” sample). In the process of self-paced learn-

ng, the first step is to select a part of the samples with small con-

truction errors (less than a certain threshold) for training, so as

o obtain accurate training models, then it adds more samples by

radually increasing threshold value to enhance the generalization

bility of training model until the established model achieve sta-

ility. 

. Approach 

.1. Notations 

In this paper, matrices, vectors, and scalars are denoted as bold-

ace uppercase letters, boldface lowercase letters, and normal italic

etters, respectively. And other used notations are summarized in

able 1 . 

.2. Unsupervised feature selection 

Given a data matrix X = [ x 1 , . . . , x n ] = [ x 1 , . . . , x d ] ∈ R 

n ×d ,

here n and d represent the numbers of samples and features,

espectively. The objective function of traditional feature selection

ethod can be written as follows: 

in 

W 

|| Y − XW || 2 F + α|| W || 2 , 1 (1)

here α is a sparse adjustment parameter, Y ∈ R 

n ×c and W ∈ R 

d×c 

enote the response matrix ( i.e., the label matrix) and the feature

eight matrix, respectively. Eq. (1) obtains the weight of features

y fitting the data matrix and the response matrix, then utilizes

he � 2, 1 -norm regularization to conduct sparsity on the weight

atrix, which can reduce the weight of unimportant features. 
ction by self-paced learning regularization, Pattern Recognition 
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In the real applications, the label of samples is usually difficult

o be collected due to all kinds of reasons, such as time cost and

udget cost. Hence, unsupervised feature selection is very popu-

ar in machine learning and data mining. Based on the property of

eatures that each feature can be represented by a linear combi-

ation of other features, the self-representation relationship of the

eatures is: 

 = XW + E (2) 

here W ∈ R 

d×d is the representation coefficient matrix, E is the

econstruction error. To obtain effective matrix W , we employ

he Frobenius norm to minimize the error, i.e., min 

W 

|| X − XW || 2 
F 

to

ewrite Eq. (1) as follows: 

in 

W 

|| X − XW || 2 F + α|| W || 2 , 1 (3) 

In Eq. (3) , the coefficient matrix W effectively reveals the po-

ential relationship among features. Moreover, the � 2, 1 -norm reg-

larization can make the rows in the matrix W corresponding to

he unimportant features approximate to zero (or directly equal to

ero). Hence, Eq. (3) can achieve the task of unsupervised feature

election. 

.3. Robust unsupervised feature selection 

Although Eq. (3) can effectively remove redundant features, it

ses all the samples to involving outliers into the feature selec-

ion model. To address this issue, self-paced learning method uses

 sampling orderly manner to train the feature selection model,

.e., first selecting important samples to establish the initial model,

nd then gradually adds the secondary samples to improve the

eneralization ability of the built model. Based on self-paced learn-

ng, we proposed a robust feature selection framework as fol-

ows: 

in 

W , v 

n ∑ 

i =1 

v i || x 

i − x 

i W || 2 2 + α|| W || 2 , 1 − 1 

k 

n ∑ 

i =1 

v i , 

.t., v i ∈ [0 , 1] , i = 1 , . . . , n (4) 

here the element v i of vector v ∈ R 

n ×1 is the weight of the

 th sample, k is self-paced adjustment parameter. By adding self-

aced learning regularization ( i.e., ϕ(v ) = − 1 
k 

∑ n 
i =1 v i ), the pro-

osed method can automatically assign the weight of selected

amples as 1. Furthermore, the parameter k can be used to deter-

ine the samples involved in the training process during the self-

aced learning process. When the value of k is large, self-paced

earning tends to choose a sample with a smaller error for the

raining process. More samples will be selected with the decrease

f the value of k . This process will be stopped until the value of

 is less than a certain threshold. In this way, self-paced learning

an effectively avoid outliers by avoiding them into the feature se-

ection model or involving the feature selection model later. 

Eq. (4) implement a “hard” sample sampling method by assign-

ng a binary weight ( i.e., v i ∈ [0, 1]) to each sample. However, since

he outliers are not evenly distributed in all the samples, the hard

hreshold weight cannot accurately determine whether the method

hould select these samples. Compared with the hard threshold

eight, soft weights are assigned to each sample with a real num-

er between 0 and 1 (including 0 and 1), which can reflect the

otential importance of training samples. By using soft threshold

eight, the final objective function of our proposed method is ob-

ained as follows: 

in 

W , v 

n ∑ 

i =1 

v i || x 

i − x 

i W || 2 2 + α|| W || 2 , 1 + 

n ∑ 

i =1 

β2 

v i + βk 
, 

.t., 0 ≤ v ≤ 1 , i = 1 , . . . , n (5) 
i 

Please cite this article as: W. Zheng et al., Unsupervised feature sele
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here β is an interval control parameter, which controls the “fuzzy

nterval” between 0 and 1. Hence, a soft threshold weight can fur-

her avoid the influence of outliers by selecting samples accurately.

.4. Optimization 

Eq. (5) contain an auxiliary variable v and there is a convex but

o smooth constraint on matrix W ( i.e., || W || 2, 1 ). In this paper,

e utilize the IRLS (Iteratively Reweighted Least Squares) frame-

ork [5] to propose an alternative optimization strategy to opti-

ize Eq. (5) , i.e., update v by fixing W and update W by fixing v .

e list the pseudo code in Algorithm 1 . 

• Update W by fixing v 

While fixing v , the objective function Eq. (5) becomes: 

min 

W 

n ∑ 

i =1 

v i || x 

i − x 

i W || 2 2 + α|| W || 2 , 1 (6) 

To facilitate the optimization, we rewrite Eq. (6) as: 

min 

W 

|| G − GW || 2 F + α|| W || 2 , 1 (7) 

where G = UX and U = diag( 
√ 

v ) . Eq. (7) can be seen as a func-

tion of W . Hence, we set the derivative of Eq. (7) with respect

to W to 0: 

−G 

T G + G 

T GW + αDW = 0 (8) 

where D is the diagonal matrix, its i th element is: 

d i,i = 

1 
2 || W 

i || 2 , s.t., i = 1 , . . . d (9) 

where W 

i is the i th row of W . After a simple mathematical

transformation, the final solution is: 

W = (G 

T G + αD ) −1 G 

T G (10) 

• Update v by fixing W 

While fixing W , the objective function Eq. (5) can be written as

follows: 

min 

W , v 

n ∑ 

i =1 

v i || x 

i − x 

i W || 2 2 + 

n ∑ 

i =1 

β2 

v i + βk 
, 

s.t., 0 ≤ v i ≤ 1 , i = 1 , . . . , n (11) 

By defining L = 

∑ n 
i =1 L i = 

n ∑ 

i =1 

|| x i − x i W || 2 2 , we have: 

min 

W , v 

n ∑ 

i =1 

v i L i + 

n ∑ 

i =1 

β2 

v i + βk 
, 

s.t., 0 ≤ v i ≤ 1 , i = 1 , . . . , n (12) 

According to Eq. (12) , the closed form solution of v i is: 

v i = 

⎧ ⎨ 

⎩ 

1 i f L i ≤ 1 √ 

k +1 /β
, 

0 i f L i ≤ 1 √ 

k 
, 

β( 1 
L i 

− k ) otherwise. 

(13) 

.5. Convergence analysis 

We denote the t th iteration of v and W as v ( t ) and W 

( t ) , respec-

ively. Based on Algorithm 1 , Eq. (5) can be written as follows: 

(W 

(t) , v (t) ) = 

n ∑ 

i =1 

v (t) 
i 

|| x 

i − x 

i W 

(t) || 2 2 

+ α|| W 

(t) || 2 , 1 + 

n ∑ 

i =1 

β2 

v (t) 
i 

+ βk 
(14) 

According to self-paced learning theory [23] and the fixed W 

( t ) ,

e have: 

(W 

(t) , v (t+1) ) ≤ E(W 

(t) , v (t) ) (15) 
ction by self-paced learning regularization, Pattern Recognition 
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Table 2 

The information of Datasets. 

Datasets Samples Dimensions Classes Type 

Umist 575 644 20 Image 

USPS 9298 256 10 Image 

Jaffe 213 1024 10 Image 

Coil 1440 1024 20 Image 

Isolet 1560 617 26 Text 

DBworld 64 4702 2 Text 

Ecoli 336 343 8 Biological 

Colon 62 20 0 0 2 Biological 
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With the fixed v (t+1) , based on the IRLS framework, we have

the following inequality: 

E(W 

(t+1) , v (t+1) ) ≤ E(W 

(t) , v (t+1) ) (16)

Integrating Eq. (15) into Eq. (16) , the final inequality is: 

E(W 

(t+1) , v (t+1) ) ≤ E(W 

(t) , v (t) ) (17)

Eq. (14) is non-increasing at each iteration according to Eq. (17) .

Thus, the proposed Algorithm 1 converges. 

3.6. Parameter determination 

In Eq. (13) , we can know that the value of the parameter k and

β determines the choice of samples in the learning process. Hence,

selecting the appropriate parameters can effectively im prove the

proposed algorithm. In this paper, we propose a simple and effec-

tive approach to solve the problem of parameter determination. 

By denoting L m 

as the maximum loss function value of initially

selected samples, we have: 

L m 

= 

1 √ 

k +1 /β
(18)

To simplify the calculation, we let k = 

1 
β

and obtain: 

k = 

1 
2 L 2 m 

(19)

By integrating Eq. (19) with Eq. (18) , we have: 

β = 2 L 2 m 

(20)

According to Eqs. (19) and (20) , our proposed method can ob-

tain the appropriate parameters k and β according to the num-

ber of samples initially selected, therefore, the dependence of the

proposed algorithm on the parameters can be reduced. After the

parameters k and β are fixed, other parameters still need to be

adjusted. In this paper, we utilize the cross-validation approach to

estimate them. 

4. Experiments 

In this section, we evaluated our proposed UFS_SP method and

six comparison methods on eight data sets in terms of clustering

performance. Specially, we first employed each feature selection

method to choose the new feature subsets from original data sets,

and then utilized k-means clustering to evaluate the selected sub-

sets. 

4.1. Datasets and comparison methods 

The datasets (such as Ecoli and Isolet) and the datasets (such

as Colon, USPS, Coil and DBWorld) are from UCI Machine Learn-

ing Repository 1 and the website of Feature Selection Data sets, 2 

respectively. Datasets Umist and Jaffe are from website of the Uni-

versity of Sheffield 

3 and the paper [22] . We summarized the detail

of all datasets in Table 2 . 

We compared our proposed method (UFS_SP) with six compar-

ison methods and listed the details of the them as follows: 

• Baseline directly performs k-means clustering on the original

data. In this paper, we used baseline as a criterion to evaluate

the actual value of the feature selection method. 
• Feature Selection Robust � 2, 0 -norm Augented Lagrangian Mul-

tiplier ( FSR_ALM [3] ) employs an � 2, 1 -norm regularization to

deal with the reconstruction error and adds an � 2, 0 -norm reg-

ularization to conduct sparsity. 
1 http://archive.ics.uci.edu/ml/ . 
2 http://featureselection.asu.edu/datasets.php . 
3 https://www.sheffield.ac.uk/eee/research/iel/research/face . 
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• Coupled Dictionary Learning for Unsupervised Feature Selec-

tion ( CDLFS [45] ) uses the coupled analysis-synthesis dictio-

nary learning to implement unsupervised feature selection and

employs an � 2, p -norm regularization on the analysis dictionary

matrix to conduct sparsity. 
• Convex Semi-supervised multi-label Feature Selection ( CSFS

[4] ) uses the least square regression to measure the reconstruc-

tion error and conduct group sparsity on feature weight matrix

by an � 2, 1 -norm regularization. 
• Regularized Self-Representation ( RSR [46] ) uses the feature

level self-representation property to mine the relationship be-

tween the features and construct the weight coefficient matrix,

then utilizes conduct sparsity on the coefficient matrix via an

� 2, 1 -norm regularization. 
• General Sparsity Regularized ( GSR [27] ) proposes an � 2, r -norm

regularization on the loss function to reduce the effect of out-

liers, and employs an � 2, p -norm regularization to achieve spar-

sity. 

In the comparison methods, FSR_ALM and GSR belong to su-

ervised learning methods, CSFS belongs to semi_supervised learn-

ng method, and CDLFS and RSR belong to unsupervised learning

ethod. In this paper, we verified the effectiveness of our pro-

osed method by comparing feature selection methods based on

ifferent learning strategies. 

.2. Experimental setting 

In our experiments, we first used all the feature selection meth-

ds to select features, and then conducted k-means clustering

ethod on the selected features to implement clustering tasks. 

It is noteworthy that the results of k-means clustering are ran-

om. In our experiment, we utilized the 10-fold cross-validation

cheme to repeat k-means clustering method ten times on the se-

ected subset. We used the average of these 10 clustering results

s the final result. We set the ranges of the parameter α of the

roposed method in Eq. (5) as { 10 −3 , 10 −2 , . . . , 10 3 } and set the pa-

ameter μ> 1. For other comparison methods, we are set in strictly

ccording to their corresponding literature. 

We utilized ACC (accuracy), NMI (normalized mutual informa-

ion), Purity and ARI (adjusted rand index) to evaluate the perfor-

ance of all the methods on eight benchmark datasets. We listed

he definition of four evaluation metric as below: 

• ACC: Accuracy indicates the percentage of correctly classified

samples, i.e., : 

ACC = N c /N (21)

where N denote the number of samples and N c is correctly clas-

sified samples. 
• NMI: Normalized mutual information uncovers a correlation

between the sample and the label. When the value of NMI is

1, the sample has the highest correlation with the label. The

definition of NMI is: 

NMI = 2 

I(X , Y ) 
H (X )+ H (Y ) 

(22)
ction by self-paced learning regularization, Pattern Recognition 
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Table 3 

Clustering accuracy on benchmark data sets. Bold numbers indicate the best results. 

Data sets Umist USPS Jaffe Isolet DBworld Ecoli Coil Colon Average 

Baseline 0.4400 0.5763 0.7230 0.4885 0.8125 0.5238 0.6097 0.3871 0.5701 

FSR_ALM 0.4678 0.6594 0.7606 0.5679 0.8594 0.6042 0.6340 0.4556 0.6261 

CDLFS 0.4609 0.6357 0.7700 0.5716 0.8378 0.6399 0.6235 0.4577 0.6246 

CSFS 0.4539 0.6305 0.7887 0.5577 0.8559 0.5923 0.6257 0.4516 0.6185 

RSR 0.4643 0.6180 0.7793 0.5538 0.8594 0.6339 0.6319 0.4686 0.6262 

GSR 0.4730 0.6684 0.8122 0.5641 0.8750 0.6250 0.6340 0.4776 0.6412 

Proposed 0.5061 0.7207 0.8967 0.6147 0.9063 0.7074 0.6681 0.5484 0.6961 

Table 4 

The results of NMI, Purity and ARI on benchmark data sets. Bold numbers indicate the best results. 

Datasets Umist USPS Jaffe Isolet 

NMI Purity ARI NMI Purity ARI NMI Purity ARI NMI Purity ARI 

Baseline 0.6492 0.5061 0.3541 0.5721 0.6651 0.4685 0.7966 0.7465 0.6422 0.7094 0.5641 0.4650 

FSR_ALM 0.6364 0.5009 0.3368 0.6107 0.7261 0.5279 0.7929 0.7906 0.6688 0.7337 0.6013 0.5099 

CDLFS 0.6361 0.5217 0.3365 0.6082 0.7053 0.5276 0.7828 0.7840 0.6209 0.7257 0.5971 0.5124 

CSFS 0.6468 0.4922 0.3506 0.6065 0.7051 0.5250 0.8638 0.8216 0.7331 0.7446 0.6212 0.5050 

RSR 0.6343 0.4904 0.3550 0.6073 0.7163 0.5193 0.8050 0.7793 0.6872 0.7335 0.6179 0.5091 

GSR 0.6417 0.5026 0.3496 0.6132 0.7256 0.5235 0.8529 0.8498 0.7383 0.7286 0.5942 0.5201 

Proposed 0.6912 0.5565 0.4188 0.6111 0.7207 0.5463 0.9019 0.8967 0.8165 0.7633 0.6449 0.5702 

Datasets DBworld Ecoli Coil Colon 

NMI Purity ARI NMI Purity ARI NMI Purity ARI NMI Purity ARI 

Baseline 0.3084 0.8125 0.3812 0.4721 0.7768 0.3520 0.7248 0.6472 0.5120 0.0014 0.6452 0.0148 

FSR_ALM 0.4230 0.8594 0.5091 0.4696 0.7054 0.4706 0.7423 0.6396 0.5780 0.0199 0.6354 0.0110 

CDLFS 0.3868 0.8438 0.4645 0.5206 0.7500 0.5411 0.7463 0.6811 0.5573 0.0510 0.6835 0.0416 

CSFS 0.4203 0.8559 0.5056 0.4752 0.7470 0.4 4 48 0.7544 0.6472 0.5977 0.0157 0.6452 0.0252 

RSR 0.4212 0.6179 0.5021 0.4704 0.7173 0.5785 0.7345 0.6694 0.5303 0.0513 0.6914 0.0423 

GSR 0.4539 0.8750 0.5555 0.4811 0.7619 0.4436 0.7094 0.6681 0.5120 0.0132 0.6652 0.0322 

Proposed 0.5489 0.9063 0.6547 0.5196 0.7976 0.5360 0.7933 0.6965 0.6377 0.0466 0.6774 0.0262 

Fig. 1. ACC result of proposed methods on all data sets at different number of samples. 
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b  
where I ( X, Y ) denotes mutual information (MI) between the

samples and the labels, H ( ·) is the entropy. 
• Purity: Purity reflects the ratio of correctly classified samples in

each cluster, which definition is: 

P urity = 

K ∑ 

i =1 

m i 

t 
P i (23) 

where K is number of clusters, m i and t are number of i th clus-

ter of samples and all samples, respectively. P i is the maximum

value that the probability of the member of i th cluster belongs

to each class. 
Please cite this article as: W. Zheng et al., Unsupervised feature sele

Letters (2018), https://doi.org/10.1016/j.patrec.2018.06.029 
• ARI: Adjusted rand index is a measure of the similarity between

the prediction labels and the real labels, i.e., : 

ARI = 

RI −E[ RI ] 
max (RI ) −E[ RI ] 

(24) 

where RI is a rand index and E [ RI ] denotes the expectation of

the rand index. 

.3. Experiment results and analysis 

We listed the clustering performance of all methods on eight

enchmark data sets in Tables 3 and 4 . We also discussed the in-
ction by self-paced learning regularization, Pattern Recognition 
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Fig. 2. ACC result of the proposed method at different parameters setting on the variables α and μ. 

Fig. 3. The convergence of Algorithm 1 on all data sets. 
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t  
fluence of sample selection of our proposed method on feature se-

lection model in Fig. 1 . 

From Table 3 we can see that the clustering accuracy of our

proposed method is excellent than all comparison methods on

all data sets. For example, our method improved on average by

12.6%, 7%,7.15%, 7.76%, 6.99%, and 5,49%, respectively, compared

with Baseline, FSR_ALM, CDLFS, CSFS, RSR, and GSR. Moreover, the

ACC result of our proposed method is better than all the meth-

ods by 8.45% on the data set Jaffe (best performance on accuracy),

and increased by 3.13% on the data set DBworld (worst perfor-

mance on accuracy). The reasons are that the proposed method

1) achieves the function of feature selection because it cluster-

ing accuracy more outstanding compared with non feature selec-

tion method; and 2) is more outstanding than other comparison

methods due to self-paced learning regularization has more effec-

tive than traditional method on handling outliers. Furthermore, in

Table 4 the value of three evaluation indexes, i.e., NMI, Purity and
Please cite this article as: W. Zheng et al., Unsupervised feature sele

Letters (2018), https://doi.org/10.1016/j.patrec.2018.06.029 
RI, of our proposed method are highest on the datasets, such as

mist, Jaffe, Isolet, DBworld and Coil. This further proved that the

ur proposed method is superior to other comparison methods. 

In Fig. 1 , we use ACC to evaluate the performance of the fea-

ure selection model ( i.e., Eq. (3) ) based on different sam ple sam-

ling methods ( i.e., Non sampling, Random sampling and Self-

aced learning). From Fig. 1 we can see that 1) random sampling

ay obtain the best performance than non-sampling method when

t selected “correct” sample subset ( i.e., that not include outliers) to

rain the model. 2) self-paced learning method obtained the excel-

ent performance than random sampling and non-sampling meth-

ds. 

.4. Parameter sensitivity and convergence analysis 

After the parameters k and β were fixed, we still need to tune

he parameters α and μ. In this paper, we set the range of α and
ction by self-paced learning regularization, Pattern Recognition 
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as { 10 −3 , . . . , 10 3 } and { 1 . 1 , 1 . 15 , . . . , 1 . 35 , 1 . 4 } , respectively, and

isted the corresponding results in Fig. 2 . As showed in Fig. 2 , we

an find that our proposed method is sensitive to the setting of

arameters. That is, the result of our method can be improved by

uning parameters. Hence, tuning the parameters is necessary to

ur method. 

Fig. 3 showed the behavior of the objective function value of

Algorithm 1: Pseudo code of solving Eq. (5). 

Input : X ∈ R 

n ×d v ( v = 1 , . . . , m ), control parameters α, β , k 

and step parameter μ > 1 ; 

Output : W ∈ R 

d×d ; 

1 Calculate loss function value L ∈ R 

n ×1 via Eq. (3) ; 

2 Initialize t=0 ; 

3 repeat 

4 Update v (t+1) via Eq. (13) ; 

5 Update W 

(t+1) via Algorithm 2 ; 

6 Update k = 

k 
μ , t = t + 1 ; 

7 until convergence ; 

ur proposed method with the increase of the iterations. In exper-

ments, we set the stop criteria of both Algorithms 1 and 2 as

Algorithm 2: Pseudo code of solving W . 

Input : X ∈ R 

n ×d v ( v = 1 , . . . , m ), control parameter α ; 

Output : W ∈ R 

d×d ; 

1 Initialize t=0 ; 

2 Initialize D 

(0) as random diagonal matrix; repeat 

3 Update W 

(t+1) via Eq. (10) ; 

4 Update D 

(t+1) via Eq. (9); 

5 Update t = t + 1 ; 

6 until convergence ; 

0 −5 , i.e., 
|| ob j(t+1) −ob j(t) || 2 

2 
ob j(t) 

≤ 10 −5 , where obj ( t ) represents the ob-

ective value of t th iteration of Eq. (5) . From Fig. 3 we can find

hat 1) the proposed objective function values is monotonously de-

reased until the proposed Algorithm 1 achieves converges; 2) the

terations of the proposed Algorithm 1 reach the convergence are

ess than 20. Hence, the proposed Algorithm 1 is very efficient. 

. Conclusion 

In this paper, we proposed a novel unsupervised feature se-

ection method by embedding a self-paced learning regularization

nto the sparse feature selection model. Specifically, we integrated

eature self representation, self-paced learning regularization and

n � 2, 1 -norm regularization into a unified framework. Experimen-

al results showed that our proposed method can achieve the best

lustering performance compared with all the comparison methods

n real data sets. 

In the future work, we will try to add graph learning to extend

ur proposed framework to conduct spectral feature selection since

raph learning can further enhance the effect of feature selection

odel [17,44] . 
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