2023年

[J]
Shichao Zhang,Jiaye Li.
KNN Classification With One-Step Computation
IEEE Trans.Knowl.Data Eng.35(3):2711-2723(2023).
[J]
Shichao Zhang,Jiaye Li,Yangding Li.
Reachable Distance Function for KNN Classification
IEEE Trans.Knowl.Data Eng.35(7):7382-7396(2023).

2022年

2021年

2020年

[J]
Zheng W, Zhu X, Wen G, et al.
Unsupervised feature selection by self-paced learning regularization.
Pattern Recognition Letters, 2020, 132: 4-11.
[J]
Chengyuan Zhang, Lei Zhu, Shichao Zhang, Weiren Yu.
PAC-GAN: An effective pose augmentation scheme for unsupervised cross-view person re-identification.
Neurocomputing 387: 22-39 (2020)
[J]
Shichao Zhang.
Cost-sensitive KNN classification.
Neurocomputing 391: 234-242 (2020)
[J]
Xiaofeng Zhu, Jiangzhang Gan, Guangquan Lu, Jiaye Li, Shichao Zhang.
Spectral clustering via half-quadratic optimization.
World Wide Web 23(3): 1969-1988 (2020)
[J]
Zheng W, Zhu X, Wen G, et al.
Unsupervised feature selection by self-paced learning regularization.
Pattern Recognition Letters, 2020, 132: 4-11.

2019年

[J]
Zhao S, Li Y, Li M, et al.
12-h abstinence-induced functional connectivity density changes and craving in young smokers: a resting-state study.
Brain imaging and behavior, 2019, 13(4): 953-962.
[J]
Zhenjun Tang, Lv Chen, Xianquan Zhang, Shichao Zhang.
Robust Image Hashing with Tensor Decomposition.
IEEE Trans. Knowl. Data Eng. 31(3): 549-560 (2019)
[J]
Xiaofeng Zhu, Shichao Zhang, Yonggang Li, Jilian Zhang, Lifeng Yang, Yue Fang.
Low-Rank Sparse Subspace for Spectral Clustering.
IEEE Trans. Knowl. Data Eng. 31(8): 1532-1543 (2019)
[J]
Xiaofeng Zhu, Shichao Zhang, Wei He, Rongyao Hu, Cong Lei, Pengfei Zhu.
One-Step Multi-View Spectral Clustering.
IEEE Trans. Knowl. Data Eng. 31(10): 2022-2034 (2019)
[J]
Chengyuan Zhang, Lei Zhu, Shichao Zhang.
PAC-GAN: An Effective Pose Augmentation Scheme for Unsupervised Cross-View Person Re-identification.
CoRR abs/1906.01792 (2019)
[C]
Miao Cheng, Weibin Yang, Yonggang Li, Shichao Zhang, Ah Chung Tsoi, Yuan Yan Tang.
Sequential Pattern Learning via Kernel Alignment.
ICACI 2019: 50-55
[J]
吴林,文国秋*,童涛,谭马龙,杜婷婷.
局部PCA与k近邻相结合的谱聚类算法.
计算机工程与设计, 2019(8).
[J]
谭马龙,文国秋+ ,童 涛,吴 林,杜婷婷.
基于mutualKNN和标准化的谱聚类算法.
计算机工程与设计, 2019, 040(007):1878-1884.
[J]
童涛,文国秋,谭马龙,吴林,杜婷婷.
基于LPCA的谱聚类算法.
计算机应用研究, 2019(11).

2018年

[J]
Zhenjun Tang, Xuelong Li, Xianquan Zhang, Shichao Zhang, Yumin Dai
Image hashing with color vector angle.
Neurocomputing 308: 147-158 (2018)
[J]
Zhenyun Deng, Shichao Zhang, Lifeng Yang, Ming Zong, Debo Cheng.
Sparse sample self-representation for subspace clustering.
Neural Computing and Applications 29(1): 43-49 (2018)
[J]
Wei Z, Xiaofeng Z, Guoqiu W, et al.
Unsupervised feature selection by self-paced learning regularization.
Pattern Recognition Letters, 2018:S0167865518302782-.
[J]
Tan M, Zhang S, Wu L.
Mutual kNN based spectral clustering.
Neural Computing and Applications, 2018:1-8.(SCI)
[J]
Tong T, Zhu X, Du T.
Connected graph decomposition for spectral clustering.
Multimedia Tools and Applications, 2018(9):1-13.(SCI)
[J]
Lin W, Zhu X, Tao T.
Global and local clustering with kNN and local PCA.
Multimedia Tools & Applications, 2018:1-12.(SCI)
[J]
Zheng W, Zhu X, Zhu Y, et al
Dynamic graph learning for spectral feature selection.
Multimedia Tools and Applications, 2018, 77(22): 29739-29755.
[J]
Zhang S, Cheng D, Deng Z, et al.
A novel kNN algorithm with data-driven k parameter computation.
Pattern Recognition Letters, 2018, 109: 44-54.
[J]
Zhu Y, Zhang X, Hu R, et al.
Adaptive structure learning for low-rank supervised feature selection.
Pattern Recognition Letters, 2018, 109: 89-96.
[J]
Fang Y, Li Y, Lei C, et al.
Hypergraph expressing low-rank feature selection algorithm.
Multimedia Tools and Applications, 2018, 77(22): 29551-29572.
[J]
Zhang S, Cheng D, Hu R, et al.
Supervised feature selection algorithm via discriminative ridge regression.
World Wide Web, 2018, 21(6): 1545-1562.
[J]
Deng Z, Zhu X, Cheng D, et al.
Efficient kNN classification algorithm for big data.
Neurocomputing, 2016, 195: 143-148.
[J]
Zhang S, Li Y, Cheng D, et al.
Efficient subspace clustering based on self-representation and grouping effect.
Neural Computing and Applications, 2018, 29(1): 51-59.
[J]
Zhu X, Zhang S, Hu R, et al.
Local and global structure preservation for robust unsupervised spectral feature selection.
IEEE Transactions on Knowledge and Data Engineering, 2017, 30(3): 517-529.
[J]
Deng Z, Zhang S, Yang L, et al
Sparse sample self-representation for subspace clustering.
Neural Computing and Applications, 2018, 29(1): 43-49.
[J]
Zhu Y, Zhang X, Wang R, et al.
Self-representation and PCA embedding for unsupervised feature selection.
World Wide Web, 2018, 21(6): 1675-1688.
[C]
Wei Zheng, Xiaofeng Zhu, Yonghua Zhu, Shichao Zhang.
Robust Feature Selection on Incomplete Data.
IJCAI 2018: 3191-3197.
[C]
Xiaofeng Zhu, Cong Lei, Hao Yu, Yonggang Li, Jiangzhang Gan, Shichao Zhang.
Robust Graph Dimensionality Reduction.
IJCAI 2018: 3257-3263
[J]
甘江璋,钟智,余浩,雷聪,赵树之.
基于自步学习多元回归分析.
计算机工程与设计,2018,39(12):3835-3839+3852.
[J]
雷聪,钟智,胡晓依,方月,余浩,郑威.
基于超图的稀疏属性选择算法.
计算机应用研究,2018,35(11):3213-3216+3219.
[J]
苏毅娟,余浩,雷聪,郑威,李永钢.
基于PCA的哈希图像检索算法.
计算机应用研究,2018,35(10):3147-3150.
[J]
郑威,文国秋,何威,胡荣耀,赵树之.
属性自表达的低秩无监督属性选择算法.
广西师范大学学报(自然科学版),2018,36(01):61-69.
[J]
罗䶮,苏毅娟,雷聪,胡荣耀,杨利锋,李永钢.
基于超图稀疏的低秩属性选择算法用于多回归分析.
计算机应用研究,2018,35(09):2671-2675.
[J]
钟智,方月,胡荣耀,李永钢,雷聪.
基于超图表示的低秩属性选择方法用于回归分析.
计算机应用研究,2018,35(07):2046-2050.

2017年

[J]
Zhu X, Zhang S, Hu R, et al.
Local and global structure preservation for robust unsupervised spectral feature selection.
IEEE Transactions on Knowledge and Data Engineering, 2017, 30(3): 517-529.
[J]
Zhang S, Li X, Zong M, et al.
Efficient knn classification with different numbers of nearest neighbors.
IEEE transactions on neural networks and learning systems, 2017, 29(5): 1774-1785.
[J]
Zhang S, Li X, Zong M, et al.
Learning k for knn classification.
ACM Transactions on Intelligent Systems and Technology (TIST), 2017, 8(3): 43.
[J]
Xiaofeng Zhu, Zhi Jin, Rongrong Ji.
Learning high-dimensional multimedia data Multimedia Systems.
Multimedia Systems (2017) 23:281–283.
[J]
Zheng W, Zhu X, Zhu Y, et al.
Dynamic graph learning for spectral feature selection.
Multimedia Tools and Applications, 2017.
[J]
He W, Zhu X, Cheng D, et al.
Unsupervised feature selection for visual classification via feature-representation property.
Neurocomputing, 2017, 236: 5-13.
[J]
He W, Cheng X, Hu R, et al.
Feature self-representation based hypergraph unsupervised feature selection via low-rank representation.
Neurocomputing, 2017, 253: 127-134.
[J]
Hu R, Cao J, Cheng D, et al.
Self-representation dimensionality reduction for multi-model classification.
Neurocomputing, 2017, 253: 154-161.
[J]
Cheng X, Zhu Y, Song J, et al.
A novel low-rank hypergraph feature selection for multi-view classification.
Neurocomputing, 2017, 253: 115-121.
[J]
Zhu Y, Zhang X, Wen G, et al.
Double sparse-representation feature selection algorithm for classification.
Multimedia Tools and Applications, 2017, 76(16): 17525-17539.
[J]
Li Y, Zhang S, Cheng D, et al.
Spectral clustering based on hypergraph and self-re-presentation.
Multimedia Tools and Applications, 2017, 76(16): 17559-17576.
[J]
Hu R, Cheng D, He W, et al.
Low-rank feature selection for multi-view regression.
Multimedia Tools and Applications, 2017, 76(16): 17479-17495.
[J]
Zhang S, Yang L, Deng Z, et al.
Leverage triple relational structures via low-rank feature reduction for multi-output regression.
Multimedia Tools and Applications, 2017, 76(16): 17461-17477.
[J]
He W, Zhu X, Cheng D, et al.
Low-rank unsupervised graph feature selection via feature self-representation.
Multimedia Tools and Applications, 2017, 76(9): 12149-12164.
[J]
Cheng D, Zhang S, Liu X, et al.
Feature selection by combining subspace learning with sparse representation.
Multimedia Systems, 2017, 23(3): 285-291.
[J]
Zhu Y, Liang Z, Liu X, et al.
Self-representation graph feature selection method for classification.
Multimedia Systems, 2017, 23(3): 351-356.
[J]
Hu R, Zhu X, Cheng D, et al.
Graph self-representation method for unsupervised feature selection.
Neurocomputing, 2017, 220: 130-137.
[J]
Zhu Y, Liang Z, Liu X, et al.
Self-representation graph feature selection method for classification.
Multimedia Systems, 2017, 23(3): 351-356.
[J]
Cheng D, Zhang S, Liu X, et al.
Feature selection by combining subspace learning with sparse representation.
Multimedia Systems, 2017, 23(3): 285-291.
[C]
Zhu X, He W, Li Y, et al.
One-step spectral clustering via dynamically learning affinity matrix and subspace
Thirty-First AAAI Conference on Artificial Intelligence. 2017.
[C]
Fang Y, Zhang J, Zhang S, et al.
Supervised feature selection algorithm based on low-rank and manifold learning.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2017: 273-286.
[C]
Zhu X, Zhang S, Hu R, et al.
Local and global structure preservation for robust unsupervised spectral feature selection.
IEEE Transactions on Knowledge and Data Engineering, 2017, 30(3): 517-529.
[C]
Zhang S, Lei C, Fang Y, et al.
Unsupervised feature selection via local structure learning and self-representation.
2017 IEEE International Conference on Big Knowledge (ICBK). IEEE, 2017: 297-302.
[C]
Zhang S, Fang Y, Lei C, et al.
Unsupervised Spectral Feature Selection with local structure learning.
2017 IEEE International Conference on Big Knowledge (ICBK). IEEE, 2017: 303-308.
[J]
杨利锋,林大华,邓振云,李永钢.
低秩特征选择多输出回归算法.
计算机工程与应用,2017,53(20):116-121.
[J]
胡荣耀,刘星毅,程德波,何威,罗噭.
鲁棒自表达的低秩属性选择算法.
计算机工程,2017,43(09):43-50.
[J]
苏毅娟,李永钢,杨利锋,孙可,罗䶮.
基于自表征和群组效应的子空间聚类算法
计算机工程与设计,2017,38(02):534-538
[J]
苏毅娟,雷聪,胡荣耀,何威,朱永华.
基于属性自表达的低秩超图属性选择算法.
计算机应用研究,2017,34(08):2294-2298.
[J]
李永钢,苏毅娟,何威,雷聪.
基于超图和样本自表征的谱聚类算法.
计算机应用研究,2017,34(06):1621-1625.
[J]
朱永华,程德波,何威,文国秋,梁正友.
基于图的特征选择算法在阿兹海默症诊断问题研究.
计算机应用研究,2017,34(04):1018-1021.
[J]
胡荣耀,刘星毅,程德波,何威.
基于稀疏学习的低秩属性选择算法.
计算机工程与应用,2017,53(10):132-138.

2016年

[J]
Xiaofeng Zhu, Feng Lu, Chen Xu, Rongrong Ji
Learning for medical imaging.
Neurocomputing, 2016, 195(C): 1-5.
[J]
Zhu X, Li X, Zhang S, et al.
Robust joint graph sparse coding for unsupervised spectral feature selection.
IEEE transactions on neural networks and learning systems, 2016, 28(6): 1263-1275.
[C]
Zhang S, Li Y, Cheng D B, et al.
Hypergraph Spectral Clustering via Sample Self-Representation.
FSDM. 2016: 334-340.
[C]
Hu R, Zhu X, He W, et al.
Supervised Feature Selection by Robust Sparse Reduced-Rank Regression.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2016: 700-713.
[C]
He W, Zhu X, Li Y, et al.
Unsupervised Hypergraph Feature Selection with Low-Rank and Self-Representation Constraints.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2016: 172-187.
[C]
Zhang S, Yang L, Li Y, et al.
Low-Rank Feature Reduction and Sample Selection for Multi-output Regression.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2016: 126-141.
[C]
Shichao Zhang, Cong Lei, Xiaofeng Zhu.
Hypergraph-based Sparse Feature Selection via Low Matrix Rank Constraint.
CCF Big Data 2016.
[C]
Shichao Zhang, Debo Cheng, Xiaofeng Zhu, Rongyao Hu, Zhenyun Deng.
Discriminative Feature Selection algorithm for Supervised Learning.
CCF Big Data 2016.
[J]
何威,刘星毅,程德波,胡荣耀.
基于稀疏学习的鲁棒自表达属性选择算法.
计算机应用与软件,2016,33(11):193-196+239.
[J]
钟智,何威,程德波,胡荣耀,刘星毅.
基于子空间学习的图稀疏属性选择算法.
计算机应用研究,2016,33(09):2679-2682.
[J]
宗鸣,龚永红,文国秋,程德波,朱永华.
基于稀疏学习的kNN分类.
广西师范大学学报(自然科学版),2016,34(03):39-45
[J]
钟智,胡荣耀,何威,文国秋,梁正友.
基于图稀疏的自表达属性选择算法.
计算机工程与设计,2016,37(06):1643-1648.
[J]
苏毅娟,邓振云,程德波,宗鸣.
大数据下的快速KNN分类算法.
计算机应用研究,2016,33(04):1003-1006+1023.
[J]
邓振云,龚永红,孙可,张继连.
基于局部相关性的kNN分类算法.
广西师范大学学报(自然科学版),2016,34(01):52-58
[J]
苏毅娟, 孙可, 邓振云, et al.
基于LPP和l2,1的KNN填充算法.
广西师范大学学报:自然科学版, 2015(4):55-62.
[J]
龚永红,宗鸣,朱永华,程德波.
基于混合模重构的kNN回归.
计算机应用与软件,2016,33(02):232-236+241.

before-2016

[J]
Zhu X, Xie Q, Zhu Y, et al.
Multi-view multi-sparsity kernel reconstruction for multi-class image classification.
Neurocomputing, 2015, 169: 43-49.
[C]
Zhang S, Zong M, Sun K, et al.
Efficient kNN algorithm based on graph sparse reconstruction.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2014: 356-369.
[C]
Cheng D, Zhang S, Deng Z, et al.
kNN algorithm with data-driven k value.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2014: 499-512.
[C]
Yan J, Cheng D, Zong M, et al.
Improved spectral clustering algorithm based on similarity measure.
International Conference on Advanced Data Mining and Applications. Springer, Cham, 2014: 641-654.
[J]
龚永红,邓振云,孙可,刘越.
基于LPP和Lasso的kNN回归算法.
小型微型计算机系统,2015,36(11):2604-2608.
[J]
孙可,龚永红,邓振云.
一种高效的K值自适应的SA-KNN算法.
计算机工程与科学,2015,37(10):1965-1970.
[J]
程德波,苏毅娟,宗鸣,朱永华.
基于稀疏学习的自适应近邻分类算法.
计算机工程与设计,2015,36(07):1912-1916.
[J]
苏毅娟,程德波,宗鸣,李凌,朱永华.
稀疏编码的最近邻填充算法.
计算机应用研究,2015,32(07):1942-1945.

Copyright © 2020. ZHANG DM LAB 广西师范大学 桂ICP备20003604号-1